Advanced motion controlEuspenSign up

Overview

The performance of controlled mechanical servosystems in an industrial setting is generally achieved by using PID+ controllers, which are designed using time and frequency responses. In drive systems with more than one axis, it is important to understand if one needs to consider interaction between the axes in the design, and if so, who to tackle the controller design challenge.

 

This course starts with a short recap of the basic course 'Motion control tuning' for a SISO (single axis) situation, followed by the analysis and control of the multivariable situation including an in-depth treatment of the interaction analysis, de-coupling and MIMO control. The knowledge will be applied to the hands-on case of a mechanical (2 axes) servo problem and all relevant aspects incl. advanced feedforward will be treated.

 

After completion of the course, you are capable of analysing an industrial multivariable servosystem and designing an adequate control. Based on measurements you can determine if and to what extend the interaction between the axes is a problem. You will be able to apply a stepwise approach to find adequate settings of a multivariable controller, to determine the achievable performance of the controlled system and to understand what limits this performance.

Intended for

This course is targetted at engineers that are involved in controlled mechanical servo systems and need to better understand what the achievable performance is, how to reach it via use of adequate controllers and which factors limit the performance.

 

Participants have a Bachelor or Master education in electrical engineering, mechanical engineering, mechatronics, physics or equivalent practical experience and need a solid basic understanding of servo control. Preferably, they have followed the course 'motion control tuning'.

Programme

The course consists of a mixture of lectures, demonstrations, exercises and experiments. For the exercises a userfriendly Matlab application is used, whereas the experiments are performed with RTLinux based instrumentation.

 

The following topics are treated:

- Recap SISO motion control tuning

- Interaction analysis

- MIMO frequency response

- Linear calculus

- MIMO stability

- De-coupling

- Sequential loop closing

- Experimental evaluation

- Model based design

- Advanced feedforward

Certification

This course is certified by the European society for precision engineering & nanotechnology (euspen) and the Dutch Society for Precision Engineering (DSPE) and leads to the ECP2-certificate.

References:

‘I like the combination between theory and exercises, this helps a lot to understand the theory better.' – Angelica Nava Richardson (ASML)
‘Most important items learned: Improve loop shaping. MIMO overall, decoupling, sequential loop'– Steven Thielemans (Michel van de Wiele)
‘Most important items learned: Sequential loop design, Standard Plant setup, Advanced feedforward.'– Michiel Puyt (ASML)

Methods

Price

€ 3.750,00 excl. VAT

Duration

5 consecutive days

Timetable

06-11-2017 | 09:00 - 22:00
07-11-2017 | 09:00 - 17:00
08-11-2017 | 09:00 - 17:00
09-11-2017 | 09:00 - 17:00
10-11-2017 | 09:00 - 16:30

Location

Eindhoven

Contact

Tel. +31 85 401 3600
E-mail: training@hightechinstitute.nl

Partner

Mechatronics Academy B.V.
Mechatronics Academy B.V.

Certified by Euspen

Euspen

You may also be interested in:

Advanced motion control

Follow-up of the basic course 'Motion control tuning'. Focusses on the analysis and control of multi-variable servo systems with in-depth treatment of interaction analysis, decoupling, MIMO-control.

Download as pdfSign up for this training Sign upPlease give me a call Call Me Back

Sign up