
TRAINING BROCHURE

Secure coding in C and C++
training

https://www.hightechinstitute.nl/courses/training-secure-coding-in-c-and-c/
https://www.hightechinstitute.nl/courses/training-secure-coding-in-c-and-c/

Secure coding in C and C++

Price: € 2,400 excl. VAT *

Duration: 3 consecutive days

Contact: training@hightechinstitute.nl, +31 85 401 3600

Score: 9.2

Pitch: https://youtu.be/MlqfWX6krJc

Intro

Your application written in C or C++ works as intended, so you are done,
right? But did you consider feeding in incorrect values? 16Gbs of data? A
null? An apostrophe? Negative numbers, or specifically -2^32? Because
that’s what the bad guys will do – and the list is far from complete.

Handling security needs a healthy level of paranoia, and this is what this
course provides: a strong emotional engagement by lots of hand on labs and
stories from real life, all to substantially improve code hygiene. Mistakes,
consequences and best practices are our blood, sweat and tears.

All this is put in the context of C and C++, and extended by core
programming issues, discussing security pitfalls of code written in these
languages.

So that you are prepared for the forces of the dark side.

So that nothing unexpected happens.

Nothing.

PRACTICAL INFO

The 'Secure coding in C and C++' training can be organized as in-
company training as well.
If on-site training is not feasible, we can discuss providing a live,
interactive online (virtual) or hybrid training. The standard program
with 3-day content can also be delivered in 5 half days (from Monday
to Friday).
Curious about how to quantify the return on investment (ROI) of
secure coding trainings? Check out this article.

Objective

Explain approaches in handling security challenges in code;
Identify security vulnerabilities and their consequences;
Learn the best practices in how to avoid these mistakes.

Target audience

This course is intended for C and C++ developers.

Program

Day 1

Security basics

Certification

After attending this training,
participants will receive a
High Tech Institute
certificate.

Trainers

Ernő Jeges MSc
Balazs Kiss

* Prices are subject to
change. Price correction will
be applied at the end of the
year.

https://www.hightechinstitute.nl/courses/training-secure-coding-in-c-and-c/
https://youtu.be/MlqfWX6krJc
https://www.hightechinstitute.nl/secure-coding-trainings-roi/
https://www.hightechinstitute.nl/courses/training-secure-coding-in-c-and-c/

What is security?

Threat and risk

Types of threats against computer systems

Consequences of insecure software

Constraints and the market

Bugs, vulnerabilities and exploits

Categorization of bugs

Seven pernicious kingdoms
Common Weakness Enumeration (CWE)
CWE/SANS Top 25 Most Dangerous Software Errors
SEI Cert Secure Coding Guidelines
Vulnerabilities in the environment and the dependencies

Buffer overflow

x86 assembly and calling conventions

X86 assembly essentials
Registers and addressing
Instructions
Calling conventions on x86
Calling convention – what it is all about
The stack frame
Prologue and epilogue
Stacked function calls
Recursion

Buffer overflow on the stack

Buffer overflow – basics
Buffer overread and overwrite
Stack smashing
Exploitation – Hijacking the control flow
Lab – Buffer overflow 101, code reuse
Exploitation – Injecting a shellscript
Lab – Code injection, BoF exploitation with a shellcode
Buffer overflow on the heap
Buffer overflow on the heap – an example exploitation
Lab – Heap overflow
Heap overflow best practices
Case study – Heartbleed
Lab - Heartbleed
Pointer subterfuge
Pointer manipulation
Write-what-where
Modification of jump tables
Hijacking GOT and RELRO protection
Overwriting function pointers
Lab – Overwriting virtual function table
Some typical mistakes leading to BoF
Off-by-one
Allocating nothing
String length calculation mistakes
Lab – Analyze UTF-8 encoding
String termination confusion
Lab – String termination confusion
Other typical BoF weaknesses

BoF protection best practices

Safe and unsafe function
base_string and std::string
Some less-known dangerous function

Lab – Fixing buffer overflow
Compiler options and instrumentation
Using FORTIFY_SOURCE
Lab – Effects of FORTIFY
Compile-time instrumentation
Stack smashing protection
Detecting BoF with the canary
Argument cloning
Stack smashing protection on various platforms
The changed prologue and epilogue
Lab – Effects of stack smashing protection
Runtime protection
Runtime instrumentation
Address Space Layout Randomization (ASLR)
ASLR on various platforms
Lab – Effects of ASLR
Circumventing ASLR – NOP sledging
Heap spraying
Non-executable memory areas
The NX bit
Write-xor-execute (W^X)
NX on various platforms
Lab – Effects of NX
NX circumvention – Code reuse attacks
Arc Injection – Return-to-libc
Lab – Exploit return-to-libc
Cascading return-to-libc
Return Oriented Programming (ROP)
Lab – ROP demonstration
Whatever Oriented Programming
Protection against ROP

Day 2

Common software security weaknesses

Input validation

Input validation principles
Blacklists and whitelists
Validation with regex
What to validate – the attack surface
When to validate – validation vs transformations
Where to validate – defense in depth
Injection
Injection principles
Injection attacks
Code injection
Command injection
Lab – Command injection
Command injection best practices
Case study – Shellshock
Lab - Shellshock
Process control – library injection
DLL hijacking
Lab – DLL hijacking
Injection best practices
Input validation
Output sanitization
Encoding and escaping the output
Encoding challenges
Integer handling
Representing signed numbers
Integer visualization
Integer problems
Integer overflow
Lab – Integer overflow
Case study – Android Stagefright

Signed / unsigned confusion
Lab – Signed / unsigned confusion
Integer truncation
Case study – Wannacry
Best practices
Upcasting
Precondition testing
Postcondition testing
Using big integer libraries
Lab – Integer handling best practices
The AIR integer model
Other numeric problems
Division by zero
Working with floating-point numbers
Format string issues
The problem with printf()
Format specifiers of printf()
Exploiting the printf format string weakness
Lab – Exploiting format string
Some other input validation problems
Improper address validation in IOCTL

Security features

Authentication
Authentication basics
Authentication weaknesses
Case study – PayPal two factor authentication bypass
User interface best practices
Password management
Inbound password management
Storing account passwords
Plaintext passwords at Facebook
Lab – Why just hashing passwords is not enough?
Dictionary attacks and brute forcing
Salting
Adaptive hash functions for password storage
Password in transit
Password policy
Weak and strong passwords
Using passphrases
Lab – Applying a password policy
The Ashley Madison data breach
The dictionary attack
The ultimate attack
Exploitation of the results and the lessons learnt
Outbound password management
Hard coded passwords
Lab – Hardcoded password
Password in configuration file
Protecting sensitive information in memory
Challenges in protecting memory
Heap inspection
Compiler removal of memory clearing code
Sensitive information in non-locked memory

Authorization
Access control basics
Missing or improper authorization
File system access control
Improper file system access control
Ownership
chroot jail
Using umask()
Linux filesystem
LDAP

Access control in databases
Lab – Database access control
Privileges and permissions
Permission manipulation
Incorrect use of privileged APIs
Exposed IOCTL with Insufficient access control
Permission best practices
Principle of least privilege
Principle of separation of privileges
Permission granting
Privilege dropping
Handling of insufficient privileges

Information exposure
Exposure through extracted data and aggregation
System information leakage
Leaking system information
Relying on accessibility modifiers
Lab – Inappropriate protection by accessibility modifier
Information exposure best practices

UI security
UI security principles
Sensitive information in the user interface
Misinterpretation of UI features or actions
Insufficient UI feedback
Relying on hidden or disabled UI element
Lab – Hidden or disabled UI element
Insufficient anti-automation

Day 3

Common software security weaknesses

Time and state

Thread management best practices
Thread management best practices in C/C++
Race conditions
Race condition in object data members
Lab – Race condition
File race condition
Time-of-check-to-time-of-usage (TOCTTOU)
Lab - TOCTTOU
Insecure temporary file
Potential race condition in C/C++
Race condition in signal handling
Forking
Bit-field access
Mutual exclusion and locking
Deadlocks
Lab – Locking
Synchronization and thread safety
Synchronization and thread safety in C/C++

Errors

Error and exception handling principles
Error handling
Returning a misleading status code
Error handling in C
Error handling in C++
Information exposure through error reporting
Exception handling
In the catch block. And now what?
Empty catch block
Best practices for catch blocks
Overly broad throws
Catching NULL pointer exceptions

Exception handling in C++
Lab – Exception handling mess

Code quality

Data
Type mismatch
Lab – Type mismatch
Function return values
Unchecked Return Value
Case study – MacOS X password hash change
Omitted return value
Returning unmodifiable pointer
Initialization and cleanup
Uninitialized variable
Constructors and destructors
Class initialization cycles
Declaration and allocation issues in C
Allocation and deallocation in C++
Unreleased resource
Array disposal
Lab – Mixing delete and delete[]
Object oriented programming pitfalls
Accessibility modifiers
Inheritance and overriding
Implementing the copy operator
Mutability
Cloning
Cloning sensitive classes – object hijacking
Object hijacking – best practices
Serialization

Wrap up

Secure coding principles

Principles of robust programming by Matt Bishop;
Secure design principles of Saltzer and Schröder;
Some more principles.

And now what?

Further sources and readings;
.NET and C# resources;
Further labs and challenges to do.

Methods

A blended learning journey: live instructor-led training with lab exercises in a
top-notch e-learning system. You will keep access to the e-learning system
3-months post-training to revisit the lab exercises and material.

Platform: Linux, Windows.
Labs: Hands-on.

Frequency

Once per year

More information

The 5-step Teaching Method

In this video the didactic method is explained ensuring that
particpants will leave the training equipped with the best practices
to apply the very next day.

Watch video

Read the interview:

Trainer Ernő Jeges about teaching coders the professional discipline to prevent
weak spots

"We aren’t selling painkillers and band-aids, but building
an immune system that’s extremely resilient."

https://youtu.be/ex1JQo0-8Zg
https://www.hightechinstitute.nl/do-not-confuse-being-able-to-hack-with-knowing-the-art-of-writing-secure-code/
https://www.hightechinstitute.nl/do-not-confuse-being-able-to-hack-with-knowing-the-art-of-writing-secure-code/
https://www.hightechinstitute.nl/do-not-confuse-being-able-to-hack-with-knowing-the-art-of-writing-secure-code/
https://www.hightechinstitute.nl/do-not-confuse-being-able-to-hack-with-knowing-the-art-of-writing-secure-code/

Interview with László Drajkó from Cydrill, our software security partner

"We teach people to instinctively use good coding
habits."

Remarks from participants:

"Big insights how security can be breached and how to fix it." > Ference Schopbarteld – Thales Group
"Balance between old & new techniques. Good hands-on training." > Hani S. – Sioux Technologies
"Interesting, challenging and technical tough. Best part is the hands-on." > Gabriele Ricciardi – Thales Group

https://www.hightechinstitute.nl/do-not-confuse-being-able-to-hack-with-knowing-the-art-of-writing-secure-code/
https://www.hightechinstitute.nl/do-not-confuse-being-able-to-hack-with-knowing-the-art-of-writing-secure-code/
https://www.hightechinstitute.nl/do-not-confuse-being-able-to-hack-with-knowing-the-art-of-writing-secure-code/

