Microcredentials: digital diplomas tracking your knowledge development

An accredited proof of up-to-date knowledge without having to return to the classroom. Hans Krikhaar is a driving force behind the introduction of microcredentials at the Dutch Society for Precision Engineering. In this interview he shares his view on the opportunities this offers.

Hans Krikhaar experienced it himself: after seven years in the field of construction engineering, returning to his original field of study – mechanical engineering – proved to be quite a challenge. Companies wanted verifiable knowledge in this field and were not willing to give him the opportunity to demonstrate his skills and knowledge on the job. In the end, that opportunity came from Philips Lighting, as Krikhaar had demonstrable experience with computer-aided design that the Eindhoven-based company was investing in. Had he been able to prove his up-to-date knowledge in mechanical engineering through microcredentials, his career might have turned out very differently.

For professionals who start working full-time after graduation, it is important to continue to develop their knowledge. Unfortunately, a long-term education program is hard to maintain next to a job, both in terms of time and costs. Workers can, however, benefit greatly from shorter training programs as they can immediately apply the gained knowledge. For one’s position in the market, formal recognition of this knowledge is very important.

In come the microcredentials: recognized digital diplomas or certificates linked to compact, validated courses. Professionals can use these to prove their specifically acquired knowledge or skills without the need to complete a full degree program.

'A system such as microcredentials can help people in similar situations demonstrate their current knowledge, which makes them more attractive for companies.''

From Philips to education

Krikhaar studied mechanical engineering at the University of Twente. He chose Twente because of the space and nature around it.

In the 1980’s, he came into contact with computer-aided design while working at Comprimo, a company that developed oil refineries and chemical plants. At the time, construction drawings were still made by hand, and computers were just starting to support this process. However, when he wanted to return to mechanical engineering after seven years in construction engineering, companies were reluctant to hire him. “A system such as microcredentials can help people in similar situations demonstrate their current knowledge, which makes them more attractive for companies,” Krikhaar explains.

Eventually, Krikhaar obtained his PhD at Philips Lighting, on computer-aided design and manufacturing within mechanical engineering, which allowed him to continue his career in that field. He later worked at Calumatic, Philishave, ASML, and as an independent consultant, before becoming a professor of Smart Manufacturing at Fontys Engineering in 2018.

The request to set up microcredentials came during the COVID-19 pandemic, when ASML wanted to have developed a Manufacturing Excellence course. “In the spirit of lifelong learning, management wanted microcredentials to be awarded to that course,” Krikhaar says. “That’s when I started exploring this form of course validation.”

The Dutch Society for Precision Engineering (DSPE), for which Krikhaar was already active at the time, has had a certification program for post-academic training since 2008, stemming from Philips’ former Center for Technical Training. Courses that the DSPE evaluates are assessed by field professionals for both quality and societal relevance. “The DSPE doesn’t teach courses, they only certify them,” Krikhaar clarifies. “That independence makes our certification particularly valuable, since we’re not judging our own work.”

To keep up with the times, Krikhaar had long believed DSPE should digitize her diplomas and certificates. He connected with Wilfred Rubens, an expert in microcredentials. With his knowledge Krikhaar is now digitizing and transforming the certificates of DSPE-accredited courses.

The value of microcredentials

To harbour the quality of microcredentials the DSPE considers four core values when awarding them. Firstly, they critically evaluate the course’s learning outcomes: what is the added value for the professional? Secondly, the level of the course is taken into account. Courses range from vocational to master’s level, and this is reflected in the microcredential. The third factor is workload: how many days or sessions does the course take? Finally, the assessment method is important. A diploma is awarded when the participant has demonstrated mastery of the learning outcomes. If there is no individual assessment, a certificate of participation is issued instead.

By taking courses needed for current projects, the professional builds a portfolio of competencies. Microcredentials from these courses can be accessed and downloaded by the professional through a secure system. The credentials can also be linked to their LinkedIn profile, which can benefit their career.

'Precision technology is developing incredibly fast. It is important for people in the field to keep up with their knowledge.''

To date, DSPE has awarded microcredentials to 49 courses. Participants who completed one of these in 2023 or 2024 received digital recognition retroactively. Krikhaar ultimately hopes to see microcredentials attached to over 200 courses.

“This way of certifying needs to gain traction. We aim to achieve this by defining ‘learning pathways’: sets of courses that, once you completed them all, show that you’ve gained specific knowledge. For example, after a vocational course in milling and turning, you could follow the specified pathway to become an instrument maker at the Leiden Instrument Makers School. Once you complete all the relevant courses, you are officially certified as an instrument maker.”

Microcredentials and the future

Although Krikhaar has reached retirement age, he remains active in precision engineering about three days a week. For example, he organizes the Dutch Precision Week around the precision fair in November. Why is he so invested in microcredentials?

“Precision technology is developing incredibly fast. It is important for people in the field to keep up with their knowledge. In addition to what I’ve said about how microcredentials work, the system can also help colleagues in HR, who often lack technical training, in guiding employees toward the right development paths. The way DSPE works enables them to better support these engineers. I think that’s a great development.”

Krikhaar hopes that DSPE’s microcredentials will eventually be recognized as professional qualifications and intends to keep working towards that goal. The organization has been around since 1954 and is run entirely by professionals, for professionals, which helps safeguard the quality of the certifications. In order to maintain independence, and to not compete with the providers they assess, the DSPE intends to stay away from offering courses itself.

When asked whether he will roll out microcredentials across Europe, perhaps through the European Society for Precision Engineering and Nanotechnology (EUSPEN), Krikhaar is brief: “That’s not something I’ll take on, but if someone else wants to do this, that would be fine.”

This article is written by Marleen Dolman, freelancer for High Tech Systems.

“If you add a little bit of damping, you can gain a lot”

passive damping
Passive damping is increasingly used by mechanical engineers designing for the high-tech industry. This was the reason for Patrick Houben, mechanical architect at Nobleo Technology, to attend the “Passive damping for high-tech systems” course at High Tech Institute.

Eindhoven-based Nobleo Technology is an engineering firm that takes on in-house development projects. It specializes in software, mechatronics and mechanics in three core areas: autonomous & intelligence solutions, embedded & electronics solutions and mechatronic systems. Patrick Houben has been employed there for two years as a mechanical architect with the business unit Mechatronic Systems. Originally a mechanical engineer, he’s worked his entire career at semicon companies, including Assembléon, when it was still called Philips EMT, and ITEC in Nijmegen.

“What I mainly do at Nobleo now is define the architecture in projects for customers, lay down concepts and support the project team,” Houben explains. “I’m working together with a team of mechatronic engineers. We ensure that customers’ wishes are properly embedded in the products or modules we design for them.”

“At Nobleo, we take care of the entire design process for the customer, including supervising the industrialization of the products in the customer’s supply chain. We do the latter together with Nobleo Manufacturing. We call this Design House+ and it’s catching on well. In addition to product development, we build and test the prototypes. During the industrialization process, we can efficiently incorporate necessary improvements in the design. The customer then has a fully equipped supply chain.”

'We were given good study cases that showed that in a mechanical construction, you often have very little damping.''

Pragmatic, practical and applicable

The reason for taking the “Passive damping for high-tech systems” course at High Tech Institute was twofold, according to Houben: to broaden his technical knowledge and to be able to apply the acquired knowledge at his clients. He had some prior experience with applying damping, but mainly for isolation, to isolate highly dynamic modules from external vibrations, for example. “I had no experience with the applications from the course. It was surprising and new to me that damping, or suppressing, a single component can greatly improve system performance.”

The course lasted three days and included practical exercises and about six extensive study cases. Houben particularly liked the fact that the course quickly switched to design rules that were easy to apply. “We were given good study cases that showed that in a mechanical construction, you often have very little damping. And if you add a little bit of damping, you can gain a lot – that was really surprising to me as well. When I look at static components in the machines of our customers, for example, they’re often sandwiched in a long span where they can resonate quite strongly. If you can reduce that with passive damping, you can get better performance and increase bandwidths without much extra cost. I really found that very instructive and practical.”

'It was surprising and new to me that muting, or suppressing, a single component can greatly improve system performance.''

In particular, the MRI scanner case, a doctoral research project by a TU Eindhoven student, resonated well with the course participants, Houben observed. “That was a clear and telling case. It involved a Philips MRI scanner where a person was placed in between two horizontal magnetic strips. Because of the positioning of the two strips, the top one could only be supported by two relatively narrow uprights. The stiffness of this construction was suboptimal and as a result of  the magnetic movements, the construction started to resonate on the uprights. By applying passive damping in the right place with the right mass and the right specifications, that whole mode disappeared. The damping mass was a simple thirty-pound plate suspended in rubber dampers and hardly added any cost to the scanner.”

Houben also appreciated the practical tip that you can install an oscillator app on your smartphone with which you can map resonances quite accurately and reason about the cause of the problems. “That helps you quickly move toward the right solution. I really liked that in the course – it was very pragmatic, practical and applicable.”

For Houben, the course was surprisingly easy to follow. “I’ve also attended courses that were a bit more difficult. Because I have a classical background in mechanical engineering, I had to build up my knowledge of dynamics, mechatronics and control technology as I progressed through my career. And yes, I sometimes noticed in courses that this was difficult, especially when faced with theoretical sums. But in this course, it wasn’t that difficult. I especially liked the interaction with the two teachers and how they coordinated with each other. It was very informal and open and there was also a lot of back and forth.”

Opportunities

Houben already sees his colleagues applying passive damping to their projects. For the client he’s currently working for, however, the concept is still new. “I’m thinking about how to introduce the acquired knowledge there, but I definitely see opportunities.”

This article is written by Titia Koerten, editor for High Tech Systems.