Mechatronics Academy

Reserve a seat without obligations
Make a definite booking


The performance of controlled mechanical servosystems in an industrial setting is generally achieved by using PID+ controllers, which are designed using time and frequency responses. In drive systems with more than one axis, it is important to understand if one needs to consider interaction between the axes in the design, and if so, who to tackle the controller design challenge.

This course starts with a short recap of the basic course 'Motion control tuning' for a SISO (single axis) situation, followed by the analysis and control of the multivariable situation including an in-depth treatment of the interaction analysis, de-coupling and MIMO control. The knowledge will be applied to the hands-on case of a mechanical (2 axes) servo problem and all relevant aspects incl. advanced feedforward will be treated.


After completion of the course, you are capable of analyzing an industrial multivariable servosystem and designing an adequate control. Based on measurements you can determine if and to what extend the interaction between the axes is a problem. You will be able to apply a stepwise approach to find adequate settings of a multivariable controller, to determine the achievable performance of the controlled system and to understand what limits this performance.

Intended for

This course is targetted at engineers that are involved in controlled mechanical servo systems and need to better understand what the achievable performance is, how to reach it via use of adequate controllers and which factors limit the performance.

Participants have a Bachelor or Master education in electrical engineering, mechanical engineering, mechatronics, physics or equivalent practical experience and need a solid basic understanding of servo control. Preferably, they have followed the course 'motion control tuning'.

Course schedule
09:00 - 17:00
09:00 - 17:00
09:00 - 17:00
09:00 - 17:00
09:00 - 17:00
Location Eindhoven
Duration 5 consecutive days
Trainers Prof. Tom Oomen
Course leader Tom Oomen Dr. Adrian Rankers
(Average score of last 3 editions)
Price € 3,825 excl. VAT. *
Keep me posted

The course consists of a mixture of lectures, demonstrations, exercises and experiments. For the exercises a userfriendly Matlab application is used, whereas the experiments are performed with RTLinux based instrumentation.

The following topics are treated:

  • Recap SISO motion control tuning
  • Interaction analysis
  • MIMO frequency response
  • Linear calculus
  • MIMO stability
  • De-coupling
  • Sequential loop closing
  • Experimental evaluation
  • Model based design
  • Advanced feedforward
Remarks from participants

"I like the combination between theory andexercises, this helps a lot to understand the theory better."

Angelica Nava Richardson - ASML

"Most important items learned: Improve loop shaping. MIMO overall, decoupling, sequential loop."

Steven Thielemans - Van De Wiele group

"Most important items learned: Sequential loop design, Standard Plant setup, Advanced feedforward."

Michiel Puyt - ASML

* Prices are subject to change. Price correction will be applied at the end of the year.