EMC knowledge overcomes problems in motion systems

Initiates in electromagnetic compatibility (EMC) will undoubtedly know Mart Coenen. His experience in the field can be traced back to the early eighties when he set up the first EMC training at Philips. In the meantime, he’s earned his spurs with clients such as the Port of Rotterdam and ASML. He still talks about his specialism with undiminished enthusiasm – just ask any of the participants in the training “EMC in Power Electronic Systems” at High Tech Institute.

 

Trained as an electrical engineer, Mart Coenen started his working life at the Philips Natlab. At that time, there was no legislation or regulation in the field of EMC, but within Philips, they felt it was important for the employees to have a thorough knowledge of the subject. “Together with Jap Goedbloed, I set up the first EMC training course in 1981. At first, it was an internal training at CTT, but soon it was extended to a national course organized by Pato, later PAO. By now, this is perhaps the longest-running course they offer,” Coenen proudly says. In 1988, he became involved in the international standardization of EMC. To this day, he’s still active in all kinds of committees dealing with the laws and regulations concerning EMC, ESD and electrical safety.

Mart Coenen - Trainer EMC for motion systems

Mart Coenen is part of the trainer team, together with Ramiro Serra from the TUE, Mark van Helvoort from Philips Healthcare and Ernest Bron from Analog Devices.

In 1994, Coenen started his own company, EMCMCC, driven by a lot of work with smaller clients, which he couldn’t (or wasn’t allowed to) serve under the Philips’ flag. He worked for the Rotterdam Port Authority, which was forced to automate its container transshipment processes due to the many strikes. From his own company, he also worked as a consultant for ASML, where he was involved in the 450-mm wafer project. For every movement in the process, the exact location of the wafer had to be determined. This was difficult because the disturbances in the system caused measurement errors. “Within nine months, we developed an entirely new concept, which was implemented. Partly because of this, there were fewer disturbances, and therefore, less calculation work was required to determine the exact location. As a result, the manufacturing process of wafers could be scaled up from 200 to 400 wafers per hour.”

Tracking

“During my work, I’ve noticed that people often believe that when a system is CE/EMC approved, it will work properly. Nevertheless, you regularly see operational problems arising, which often lie in the area of EMC,” Coenen emphasizes. “After all, EMC system approval is no guarantee for a reliable operational system. It’s important to be alert to what happens if a system is temporarily disrupted and to realize what consequences this disruption can have on the system. Is it a disruption that has no influence at all? Or one in which there’s a temporary outage but everything continues properly after restarting? Or is a hard reboot of the system necessary, or do parts even need to be replaced? It’s important to realize that the process doesn’t always continue properly. It may be that even the smallest temporary disturbance is inadmissible. For example, if you produce wafers that require an accuracy of 2 nm, then a temporary deviation of 20 nm is unacceptable because that would mean that you have to throw away the exposed wafers. Of course, as a customer, that’s not what you want. A suitable solution has to be found for this type of problem.”

The tricky thing is that the signals are often in an area where regulation is lacking. For both the mains and the inrush currents, everything is fixed, but this isn’t the case for signals in moving systems. This type of signal is typically in the frequency range between DC and 150 kHz. On the one hand, you have the electronic signal controlling a displacement. On the other hand, there’s the signal from a sensor, which retrieves information to determine the location. These two signals can influence each other. In motion technology, you’re bound to the signal frequencies you need for the displacements. These frequencies can cause disturbances that get picked up by the sensors. The trick is to learn how to deal with them.

'It’s the search for a solution and eventually finding it that gives me a pleasant adrenaline rush.'

“Even after all these years, the EMC field is still attractive to me. There’s always that challenge to get something working. And if it doesn’t work, there’s the challenge of searching for the right solution. Sometimes the solution is obvious, sometimes it’s more difficult. It’s the search for a solution and eventually finding it that gives me a pleasant adrenaline rush every time. Also, the field is still very much in motion. More and more is happening via the Internet of Things, with an increasing number of sensors generating data. Still, we have to keep asking ourselves what the reliability of this data is and how useful it actually is. I’m also following these developments with interest.”

Hands-on

During the “EMC in Power Electronic Systems” training, part of the portfolio of High Tech Intitute partner T2Prof, participants gain insight into the problems that can occur in motion systems and learn what to do about them. Coenen: “In this training, we focus on the area that falls outside the norms and teach our students to create a reliable system that is operational 24/7. Although this training is relatively new for High Tech Institute, as a teacher for CTT, Pato, Mikrocentrum, Avans and Fontys University of Applied Sciences, I’ve already gained a lot of experience. My experience is that students find the material very difficult at first, but if you offer them the right theory during the course and let them practice it themselves, they can put what they’ve learned into practice very well afterward.”

Training EMC for motion systems

'There are demos and students can do their own simulations on setups. '

The training is intended for mechatronics engineers, electrical engineers and system architects who in their work have to deal with low-frequency disturbances (from DC to about 150 kHz) caused by motion and energy conversion systems. Students learn about systems thinking and how to anticipate problems they encounter in practice. Coenen: “In addition to signal theory, which is based on physical laws, network theory and knowledge about the behavior of cables, there’s also a hands-on part. There are demos and students can do their own simulations on setups. It’s important that during the training, they learn what they can measure and how they should do it. I’m looking forward to introducing the students to the EMC in Power Electronic Systems together with my fellow teachers Ramiro Serra from the TUE, Mark van Helvoort from Philips Healthcare and Ernest Bron from Analog Devices.”

In November 2020, the team of experts delivered the very first 3-days training to a group of 10 participants. When asked if they would recommend the course to others, participants responded with an emphatic 8.3 points out of a possible 10 and gave the lecturers a score of 8.4. Respondents also offered several praising comments. “Good to receive the theoretical background and the setups were very useful,” one of the trainees commented. Another pointed out that the training exceeded his expectations. Other positive comments: “Love the number of demonstrations” and “Background theory was very helpful. Nice demos! Good interaction.”

This article is written by Antoinette Brugman, tech editor of Bits&Chips.

Recommendation by former participants

By the end of the training participants are asked to fill out an evaluation form. To the question: 'Would you recommend this training to others?' they responded with a 8.3 out of 10.

System architecture and leadership – practical and no-nonsense

High Tech Institute is launching an intensive System Architecting Masters (Sysam) training program for system architects and systems engineers. Ger Schoeber and Jaco Friedrich offer aspiring professionals a robust nine-month program of training and coaching on their own projects.

 

Central to the new System Architecting Masters (Sysam) program are the current projects of participating system architects and system engineers. “The goal is both to contribute to the competence growth of participants and, at the same time, to add value to the participants’ ongoing projects,” says Ger Schoeber, who has been training system architects for more than 20 years.
Schoeber likes to put his nose to the grindstone. He works four days a week at Lightyear as a group leader and domain expert in systems engineering and spends one day on another passion: his systems training courses at High Tech Institute. “It’s very nice to help people grow in their experience through training,” he says. “The satisfaction for us as a training institute is even greater when we see direct effects in the improvement of actual industrial projects.”
Schoeber teaches Sysam together with Jaco Friedrich, who as a full-time trainer of leadership skills mainly sees technicians. Friedrich has trained several thousand professionals in high tech. “High-tech companies recognize effective communication, giving feedback and influencing without power as essential skills of the system architect,” he says.

Ger Schoeber (left) and Jaco Friedrich (right).  

 

CAFCR and NASA

The nine-month Sysam program consists of three intensive training blocks of four days each, with several months in between for assignments on the job, coaching and intervision. Guest speakers share their extensive experience in system architecture, systems engineering and complex development. Half of the training consists of essential systems engineering and system architecting topics. Schoeber draws on two sources, Gerrit Muller’s CAFCR framework and the NASA Systems Engineering Handbook.
“CAFCR is all about putting yourself in the shoes of the customer and stakeholders, looking at the system architecture from five perspectives,” explains Schoeber. “Only two of them are about technology, about the solution. The other three are about the customer perspective. That, in my experience, is where the great value of the CAFCR framework lies.”
“The functional view, the F from CAFCR, is about the specification, the requirements: what does the customer actually expect from the product or what do the stakeholders expect from the system, regarding functionality, quality and performance? The application view, the A from CAFCR, requires you to look at the broader context. In which environment is the future subsystem or system located? How will it be integrated, deployed, used, and so on? If you have a good picture of that, then you understand what is or isn’t useful. That enables you to better align the requirements with the actual need.”

'CAFCR allows us to come up with solutions that will help customers even more. '

The first C in CAFCR is all about customer objectives. “What’s his business? How does he make his money? What’s the reality of his customer or the colleague who’s going to integrate my subsystem? If you understand that better, you can better see what he needs to improve his business. CAFCR forces us to not only look at the technology but also at the specifications and the rationale of the requirements. It allows us to come up with solutions that will help customers even more.”

The CAFCR model by Gerrit Muller: www.gaudisite.nl

 

In addition to CAFCR, Sysam uses the NASA Systems Engineering Handbook. “A systems engineering handbook provides guidance on how to set up, roll out, complete and execute activities in a product creation process,” Schoeber points out. “Developers often use the V model, with on the left side the system definition – from concept of operations, requirements, architecture, design to engineering – and on the right side the system realization – from engineering to integration, verification and validation. NASA’s recently updated systems engineering manual takes this approach and also very frequently integrates short-cycle feedback loops, which is also the basis of agile thinking. The latest revamp has also made it very accessible, readable and applicable.”

Practice in practice

The other half of the training consists of intensive exercises with practical situations, such as convincing stakeholders and being able to turn resistance into buy-in. Friedrich: “Practice takes time. When engineers experience it in a training course, they immediately see the value. The added value is in the experience. What seems easy on paper is not at all easy in practice. By practicing, participants step out of their comfort zone and actually experience how things can be done differently. This gives them self-confidence and motivation to apply it immediately. And it turns out that this practical approach also successfully results in participants doing their work differently. After the training, they often say that they should have done it much earlier.”

'It’s about learning to deal with risks. So, leadership instead of science. '

One of the typical pitfalls that Friedrich deals with while training is daring to take a position, even though not all the facts are known yet. “It’s about learning to deal with risks. So, leadership instead of science. This also includes the ability to manage a team. How do you make time to deal with the big picture? The ability to delegate tasks and responsibilities in an inspiring way is a prerequisite for further growth. Influencing stakeholders and setting parameters take time and mental space. The architect must learn to create this space for himself.”

There are several months between the three training blocks of four days. During this time, Schoeber and Friedrich coach the participants. Intermediate sessions are also planned where the trainees share experiences.
To guarantee quality, the number of participants in Sysam is limited to a maximum of twelve. This also ensures that participants can effectively share experiences about their projects. Because everyone is engaged in their own practice from the beginning, the training program is effective from day one. “This means that they recoup their investment in the very first year,” says Schoeber. “After that, it’s all profit.”

This article is written by René Raaijmakers, tech editor of Bits&Chips.

“It’s not the products we make, but our people that are our greatest asset”

Dutch high-tech is full of talented engineers. But how do companies ensure they keep this talent in house? For Sioux Technologies, it’s all about putting an emphasis on the people, and keeping them happy and challenged with interesting projects, life-long learning and custom training opportunities. Recently, Sioux and High Tech Institute organized a customized software security training with Duncan Stiphout.

Whether you’re fresh out of college or have been in the business for decades, there’s always something to learn. From personal to professional, social to technical skills, staying sharp is key – especially in the high-tech industry.

For Sioux Technologies, this fact is absolute. “We’re a high-tech solutions provider. We don’t make end-products; we deliver services, modules and submodules to our high-tech customers and partners,” describes Duncan Stiphout, group leader of the system control software department and people manager at Sioux. “For us, knowledge and expertise really set us apart. It’s not the products we make, but our people that are our greatest asset – we just prefer to keep calling them people,” he jokes.

Here at Sioux, or anywhere else for that matter, not everyone has the aspiration to become a senior system architect,” says Duncan Stiphout. Photo by Bart van Overbeeke.

Over the last 20 years, Stiphout has learned a lot about people and growth. For the first half of his tenure, he served in highly technical roles – starting as a software engineer right out of college and working his way up to a software architect. “At some point in time, I got a taste of the project management side of the business. And I’ll be the first to tell you, that stuff isn’t for me,” he recalls.

For Stiphout, being responsible for continuous planning and management just didn’t feel like the right fit. A little bit of chaos, as he puts it, is a good thing. “What I learned though, was that was ok. Here at Sioux, or anywhere else for that matter, not everyone has the aspiration to become a senior system architect,” he says. So, roughly 10 years ago, Stiphout decided he’d like to find a role more suited to him – even if he didn’t know what that was at the time.

Hapiness manager

Speaking with his people manager, Stiphout began looking into the various options that best suited him and his career – both inside and outside of Sioux. That’s when a new people manager position opened up and caught his attention. “I talked to some managers and colleagues about my interest in the position and I received a lot of good feedback. A number of people had already worked with me and appreciated my communication style and that I could help guide and lead them in their personal career paths,” says Duncan Stiphout. “I also think that situational management is one of my core strengths and something that I rather enjoy. So, I jumped at the opportunity and took the chance with both hands.”

'My main focus lies in keeping my group challenged and happy in their roles as they further develop in their careers.'

Taking this new position was a big step for Duncan Stiphout. After all, he was stepping away from his more hands-on technical role and moving toward a manager’s role focused on growth. Not only his personal growth, but also that of the business, and now, of his colleagues. “Now, my focus isn’t only on projects but also on the happiness of others. I guess you can call me a happiness manager,” laughs Stiphout. “In this role, my job focuses on recruitment, retention and competence management. My main focus lies in keeping my group challenged and happy in their roles as they further develop in their careers.”

Function house

To keep its people happy and on the cutting edge of technology, Sioux has fully committed to life-long learning opportunities for employees. In fact, the company offers each of its workers an annual personal training budget of 6,000 euros to use at their discretion for everything from books to seminars and training courses. “This really helps us get the best out of our teams, and that’s a big part of my role – helping people find ways to improve themselves and keep them interested,” highlights Stiphout.

In practice, of course, this can take on many different forms – especially as employees grow within the company and climb up the ladder. “When we get new engineers, we help them look at their goals and map what we call their function house. Essentially, this highlights the opportunities and expectations for every level, from junior and senior software engineers to designers up to system architects,” illustrates Stiphout. “What we’ve found is that very early in someone’s career, many engineers are mostly interested in technical courses and improving their technical skills. Once someone reaches the level of designer, however, they often turn toward personal or soft-skills trainings dealing with influence and leadership.”

In the name

To offer employees leading-edge training, Sioux has several options available, offering internal coaching and in-house training, as well as turning to training organizations for their expertise. Stiphout: “We really see the value of training for our people. Of course, it’s difficult to calculate, but I believe there’s a real return on investment when my team members return from good trainings. You can see how inspired they are to try what they’ve learned, or how perspectives of events or their skills have changed as a result.”

Choosing the right training, though, can sometimes be a little tricky for a company like Sioux, so they really try to do their research to see what trainings have the best reviews and what could prove to be most valuable for their teams. “There are a number of different training organizations around, especially in software development – which, despite our multi-disciplined teams, is still a very big part of what we do at Sioux. For a lot of them, though, the trainings focus less on the high-tech domain, and more on other areas, for instance, administrative systems software,” explains Duncan Stiphout.


Photo by Bart van Overbeeke.

“That’s one reason we rely heavily on High Tech Institute and also why we look to contribute our expertise in helping design some courses – with a few specialized trainings, like the System Architecting (SysArch) and Multicore Programming courses, which are instructed by Sioux colleagues. Their reviews are outstanding and their portfolio offers a relevant training for every single level, from junior engineer to senior system architect. We find that so important because it perfectly matches our high-tech ambitions. Which makes perfect sense as ‘high tech’ is already in the name.”

Customization

In addition to sending employees to multiple training courses with High Tech Institute over the years, Duncan Stiphout has also worked with them to plan in-company editions of trainings for larger groups at Sioux. “Of course, they offer off-the-shelf courses, but when looking to make it in-company, the team at High Tech Institute offer the chance to tweak and customize a training to fit our specific needs,” says Stiphout.

'Sometimes, it means that we need to be critical of customer's demands.'

“Recently, I started working with Jaco Friedrich to customize an in-company session of the ‘Leadership for architects and other technical leaders’ training as a follow-up to the system architect’s training. In our work at Sioux, we’re really aimed at building customer intimacy and offering the unique perspective of our technical leadership. Sometimes, that means that we need to be critical of their demands,” explains Stiphout. “But learning how to better communicate that critique is extremely important and we believe that it’s something that distinguishes us from our competition. That’s why we’re looking forward to a continued collaboration with Jaco and the rest of the team, to offer our group at Sioux the chance to really build and enhance these skills.”

This article is written by Collin Arocho, tech editor of Bits&Chips.

“Start with system functions and think beyond the boundaries of your own discipline”

High-tech development processes are becoming so complex that organizations cannot avoid thinking and working in a multidisciplinary way. After all, the ideal solution is rarely one-dimensional. However, collaborating engineers from different fields are only successful if they understand each other’s jargon. VDL ETG T&D sends its technology professionals to the Mechatronics system design training at High Tech Institute so that they can train that skill.

The mechanical engineering group of VDL ETG’s Technology & Development department currently employs approximately fifty people, of eight different nationalities. Group leader Bart Schalken notices the differences: “Education in the Netherlands is excellent and the knowledge level is very high. You can only see that clearly when you start recruiting internationally. I grew up in Eindhoven, so in my experience, this is the normal world. However, when you talk to international engineers, you notice how special the technical level is in this region. In the field of precision mechanics, our schools and universities are ahead of their international counterparts.”

'Mechanics may often be the basis here, but that doesn’t mean that you can meet all system requirements.'

Another point where Dutch engineers excel is that they’ve learned to look beyond the boundaries of their own discipline. This quality is becoming increasingly crucial. “Development processes are almost all multidisciplinary and so complex that you can no longer approach them sequentially; you have to move in parallel,” says Schalken. “Mechanics may often be the basis here, but that doesn’t mean that you can meet all system requirements. Then it’s important to involve another discipline. Only by connecting and working together can you ensure that the product will meet the functional requirements.”


“You don’t have to know all the ins and outs of the other discipline, but you do have to master the basics,” says Bart Schalken of VDL ETG T&D. Credit: Bart van Overbeeke

But how do you find the right specialist within a group like Technology & Development that has grown from a few dozen to around three hundred and fifty since its inception eight years ago? To keep an overview and to ensure that everyone knows exactly who to contact, Schalken has carefully mapped out the sub-competences. “I’ve listed more than two hundred competencies and capabilities within mechanics and indicated per employee who has what knowledge. Those scores make it immediately clear who you should go to if you need knowledge about, for example, leaf spring constructions or vacuum systems,” Schalken explains. “Ultimately, the goal is to deliver the best result for our customers, but the know-how for the optimal solution doesn’t necessarily have to come from your project group or department. We make use of all the knowledge we have on board. And if there’s a hiatus, we always have our network of external partners and universities. That’s the atmosphere I want to create.”

Due to the increasing complexity and the urge for a shorter lead time, VDL ETG works with increasingly large project teams. “So the need for multidisciplinary collaboration is getting bigger and bigger,” Schalken experiences. “Normally, we’re in a large office space, but now, because of corona, we often work from home. That doesn’t make it any easier. Of course, we share the most important project information during digital meetings, but what’s missing now are the accidental conversations that arise at the coffee machine. While those are often the lubricant of smooth collaboration in projects.”

Eye-opener

A precondition for good collaboration is that engineers speak the same language. “You only seek each other out if you understand each other’s jargon,” says Schalken. “You don’t have to know all the ins and outs of the other discipline, but you do have to master the basics. Everything revolves around communication.”

To make the collaboration between the disciplines more effective and more decisive, at the beginning of last year, Schalken arranged for the High Tech Institute’s “Mechatronics system design” course to be given in-house at VDL ETG. Many of his people have now attended this training to gain a better understanding of adjacent disciplines. The course covers basic concepts and terminologies and the participants apply them to the disciplines around them.

“My group mainly consists of mechanical engineers, but such a course only really catches on when the other disciplines join as well. That’s why we invited people from the software, electronics and mechatronics groups. In addition to paying attention to theory, the training makes time to work together in teams pragmatically. That provides so much insight. Only when you look at a problem together, you really notice how they approach it from a different discipline. A real eye-opener.”

Although the follow-up process has been temporarily delayed due to the current corona measures, Schalken hopes that eventually most of his own group and as many engineers from other disciplines as possible will learn to speak the common engineering language. “In recent years, TU graduates have been given a broader base and have been trained to think and work in a multidisciplinary manner. For them, the Metron 1 training is no longer necessary and Metron 2 suits them better. That’s perfectly fine, of course – the great thing is that the added value is recognized,” Schalken states.

Start with the function

In addition to the training being an eye-opener for the participants, Schalken is counting on another advantage to become visible. “The core of VDL ETG is in system development, in combination with our manufacturing knowledge,” he explains. “Everything is under one roof. You can walk from the engineering department to the machining hall and the sheet metal shop. We have a lot of knowledge about manufacturability and value engineering. Helping and advising customers with DFX is where it all began. Today, VDL ETG itself is the development party and customers involve us starting from the specifications. We take care of the entire development process up to and including realization. As a result, customers only have one point of contact for the entire process.”


“Only when you look at a problem together, you really notice how they approach it from a different discipline.” Credit: Bart van Overbeeke

This approach means that VDL ETG engineers not only see the theory but are also closely involved in the manufacturing process, assembly and qualification of the end product. “The close connection between theory and practice ensures a steep learning curve for our engineers,” Schalken points out. “This knowledge is further enhanced because they get direct feedback on how the products are performing in the field. For example, we analyze parts that are returned after an update. Any weak links become visible and we take that knowledge with us to improve the next design.”

The mechanical engineers at VDL ETG focus a lot on DFX for series products in high-tech. “This knowledge is now well embedded within the organization,” says Schalken. “The next step is that we learn to think and work from the function of the system. What does the customer really want? What’s the question behind the question? And what roadmap is behind that?”

'The keys are communication and speaking the language of your colleagues from another discipline.'

Because VDL ETG has traditionally been quite focused on mechanical engineering – “our mechanical engineers are often the owner of a system” – the solution to a problem is quickly sought in that corner. “Ultimately, of course, you want to move towards a feasible and cost-efficient design – we’ve already laid that foundation – but the function of the design is the starting point,” Schalken states. “What does it take to make it happen? That’s the goal you must have in mind all the time. The mechatronic systems we develop focus on increasingly faster and more accurate positioning in an increasingly cleaner environment. What competencies do you need to realize such a position accuracy with those preconditions? You don’t have to come up with the solution yourself, but you must understand when to involve whom in the development to reach the end goal. The keys are communication and speaking the language of your colleagues from another discipline.”

This article is written by Alexander Pil, tech editor of Bits&Chips.

Recommendation by former participants

By the end of the training participants are asked to fill out an evaluation form. To the question: 'Would you recommend this training to others?' they responded with a 8.9 out of 10.

Experimental validation requires craftsmanship

Experimental techniques in mechatronics - Pieter Nuij
His two passions run like two red threads through his career. At Philips, at the Eindhoven University of Technology and at NTS, Pieter Nuij became one of the leading figures in experimental techniques and validation in mechatronics. In all these places he also profiled himself as a teacher. He now has his own consultancy firm, Madycon, and is one of the course leaders at the High Tech Institute’s ‘Experimental techniques in mechatronics’ training.

“It was a fantastic period.” With great pleasure and nostalgia Pieter Nuij looks back on his time at the renowned Philips CFT. “We were at the forefront of mechatronics, developing things that simply didn’t exist yet. We worked in a group that was bursting with energy and under the inspiring leadership of Jan van Eijk, Adrian Rankers, Herman Soemers and Maarten Steinbuch, among others.”

It is there, in the Philips offices at Strijp-S in Eindhoven, that Nuij can further explore his passion for which he laid the foundation during his graduation work at TU Eindhoven and during an earlier Philips assignment in the Optical Disc Mastering group: experimental techniques. “It is often very interesting to track, trace and troubleshoot”, says Nuij. “The combination of making measurements and analyzing why the system doesn’t do what is expected. You have to look broadly and open-mindedly identify and test all possibilities.” In addition, Nuij gets a lot of energy from transferring his knowledge. At CFT he stood at the cradle of the course ‘Experimental techniques and mechatronics’, provided by Philips’ training branch CTT.

This combination led Steinbuch to ask Nuij to join him on the transfer to the Eindhoven University of Technology when he was appointed fulltime professor in 1999. “Steinbuch was looking for someone to bring the experimental techniques in the lab back up to par and he thought that I should be the guy to do that,” says Nuij, who is hired as an assistant professor on the condition that he would obtain his PhD degree “within the foreseeable future”. Eventually Nuij does indeed succeed in doing so in 2007, “with two children on my knee, a full-time job, an understanding wife and Maarten as an inspiration”.

Trainer Experimental techniques in mechatronics
Pieter Nuij: “The validation of the design, including physical measurements, is very often sacrificed.

 

Chores

Nuij remains at the TU Eindhoven until 2013. “I was able to fully satisfy my interest in vibrations and vibration analysis, and could completely lose myself in the education side – freshman lectures in signal analysis with two hundred people in the room, awesome.”

Ultimately, Nuij leaves because he does not agree with the way education is viewed. “To put it bluntly, I see universities as a supplier of two products: high-quality knowledge and damn good engineers,” he explains. “But what you saw is that the quality of research groups is measured much more by the number of publications than by the level of the graduates. Moreover, students were given less and less time to master the material. During that time I was also a study advisor for five years where I saw up close that students simply need time to digest material. You can’t just force it through.”

'More and more educational activities were considered chores because they stood in the way of the acquisition of projects.'

“In addition, there is no dual career system at universities,” Nuij continues. “The only way to get a promotion is through the scientific route, from assistant professor to associate professor. The strange thing is that the term ‘professor’ implies teaching is involved, but you saw that more and more educational activities were considered chores because they stood in the way of the acquisition of projects.”

 

Reluctance

Things are starting to frustrate him so badly that Nuij is switching back to industry, to NTS in Eindhoven. There too, training is an important part of his job description. And that training is necessary, says Nuij. “In the industry, developments are always pressed for time. This means that the factory acceptance test is done briefly at the very last moment, is curtailed or even skipped altogether. The validation of the design, including physical measurements, is very often sacrificed.”

Nuij also notices that even at a reasonably large party such as NTS, experimental techniques in mechatronics are a specialty that is not required forty hours a week. “Engineers who take it upon them part-time are eventually sucked in a different direction because there is more work to be done elsewhere. And with that, the focus disappears completely. Hiring an outside consultant is a good alternative, although companies feel it is more expensive. But that isn’t the case. The sooner you call in a specialist, the better. Fortunately, there are also plenty of companies that are serious about validation.”

“The other side to the story is that there is an increasing emphasis on simulation in the design process,” continues Nuij. “With that, developers hope to make their design first time right. In my experience, very good simulation specialists sometimes loathe validation tests. It can be confronting when such a test shows that something is wrong with your work. I regularly sense that that explains the reluctance to test it. That is a shame, because it decreases the ability to learn about the quality of your models. That feedback loop is often missing.”

'I don’t believe the software will ever become so good that a specialist becomes redundant.'

Simulation tools and digital twin packages are getting better every year. Does Nuij think that they ever will be sufficient to guarantee the quality of the design? “User-friendliness is indeed increasing. But with that, you run the risk of being lulled to sleep. I’m getting nervous when people say: “That software is so powerful, it doesn’t make mistakes anymore.” Then you are really missing the real picture. You will absolutely have to remain critical of the outcome, do not rely on it blindly. When using that software, you must also be able to test partial results in an experimental setting. It is quite possible that the software will become so user-friendly that those tests are very easy to perform. But you have to keep testing. I don’t believe the software will ever become so good that a specialist becomes redundant.”

Students of training "Experimental techniques in mechatronics"

'In the training, we consciously work with outdated equipment.'

Priced competitively

Why is it so difficult to measure a mechatronic system? “That has a number of facets. First, it requires the right hardware,” Nuij replies. “Expensive items have to be bought. You can also go for cheaper devices, but they will give you questionable results and that will end up being much more expensive. You need to understand the hardware and know what you need when purchasing them. That already requires quite a bit of basic knowledge. And than you also need to use that equipment properly. There are many buttons that allow you to make big mistakes very easily. The results come out in 16-bit deep color, but that doesn’t say it’s any good.”

“The same applies to the required software,” Nuij continues. “The suites for vibration analysis are priced competitively; you are easily talking about thousands of euros. Much more than, for example, a Matlab license that can also be used much more widely. So it proves difficult to get approval from your boss. Here in the region, Mescope from the American Vibrant Technlogies is the most used vibration analysis software. But there are more, such as solutions from Siemens and the Danish Brüel & Kjaer.”

“Third, there is a good dose of craftsmanship involved. It is an exotic competence, but an indispensable one. You have to be able to do the manual work. You need a certain experimental skill to excite the construction in the right way, for example with a hammer with a built-in force sensor. You will also have to take into account that somewhere a connector is not working properly or that the accelerometer may not be properly secured. If you don’t know where to look, you can easily miss that sort of thing.”

Precisely this practical side is why the training ‘Experimental techniques in mechatronics’ of High Tech Institute, a continuation of the old CTT course, has been temporarily suspended. “You can’t do that online,” says Nuij, who is one of the teachers. “After corona we will continue.”

Pre-corona the course consisted of many hands-on hours. “We consciously work with outdated equipment. And the software still runs on XP,” laughs Nuij. “Those measuring systems still allow students to make mistakes. If they then notice that the result is different from what they thought, the thinking process starts. You hear the pennies drop everywhere and as a teacher you have reached your goal.”

This article is written by Alexander Pil, tech editor of High-Tech Systems.

Recommendation by former participants

By the end of the training participants are asked to fill out an evaluation form. To the question: 'Would you recommend this training to others?' they responded with a 9.5 out of 10.

Power electronics is never on its own

Electro-mechanic actuators, driven by highly efficient and accurate power electronic circuits, are the working horses of the industry. They determine the performance and quality of many industrial processes. High-Tech Systems spoke with Jeroen van Duivenbode, power electronics specialist at ASML, fellow at the Eindhoven University of Technology and trainer at High Tech Institute.

He needs a couple of moments to consider, but then he nods affirmatively: “Yes, there are still products circling the earth that I have designed.” Jeroen van Duivenbode may be working at ASML for close to a quarter of a century, his roots are in aerospace. This background sometimes give him interesting and radically different ideas in the semiconductor world.


Jeroen van Duivenbode: ‘The nice thing about power electronics is that it contains all subdomains of electrical engineering.’

After his MSc degree in power electronics at the Delft University of Technology, Van Duivenbode moved to France to work at – what was then called – Alcatel Espace in Toulouse, now part of Thales Alenia, where he designed power converters for satellite instruments. “That usually concerned radio transmitters and receivers that had to get their power from on-board batteries and solar panels”, he says. “The other side of my work involved simulation models. I did a lot of calculations on power systems for satellites and space stations. Nowadays, you have all kind of tools for that, but back then – in the late eighties and early nineties – we had nothing.”

After five years in France, Van Duivenbode made the switch to Norway, to Norspace, also a specialized company in space electronics. “Among other things, we built surface acoustics wave filters, small quartz-based components that we used to develop high-quality band pass filters. We also delivered systems to the Ariane 5 rocket. You can imagine that we were a little stressed out when her first test flight failed. Luckily, it wasn’t our fault; the malfunctioning was caused by an error in the software. Afterwards, our units were found back in the swamps of French Guiana. They still were operational, although they had fallen back to earth from four kilometers in the air.”

Cosmic radiation

Back in the Netherlands, Van Duivenbode starts working for ASML. In almost 25 years, he has become one of the go-to guys for power electronics. It’s an area of expertise that is certainly not of minor importance for the chip manufacturing systems from Veldhoven. All movements from, for instance, the wafer and reticle stages need hefty power levels, while margins are extremely small. “In the total error budget of the design we are talking about several percent. That translates to the requirement that we have a tolerance of about a tenth of an atom”, Van Duivenbode explains.

'We have to look further than just currents and voltages, but also simulate and calculate how errors seep through in the eventual system performance.'

As with ASML in general, the work of Van Duivenbode is dictated by Moore’s Law. ‘Furthermore, productivity is an important feature of ASMLs machines. A shorter scan time means faster movements and more power.” And a lot more power because there is a cubic relation between productivity and peak power: doubling the productivity requires a eightfold increase in power. “We have been through several of these doublings. In the old days, the electronics for all motions would fit in a shoebox, now every machine needs several cubic meter of power electronics.”

Because the margin of error is so small, even the faintest disturbance can seriously hamper the system. “Once we were working on a new generation of amplifiers. We had increased the voltage and pushed the mosfets to the limits,” Van Duivenbode recalls. “Within two weeks quite a lot of those mosfets had malfunctioned. We tried to find the cause and eliminated every possible explanation, from EMC to system failures, but everything seemed in order. Only one option remained: cosmic radiation.”


In the old days, the power electronics for all motions in an ASML machine would fit in a shoebox, now every machine needs several cubic meter of power electronics. Credit: ASML

In his earlier career, cosmic radiation was his everyday’s business, but in the semiconductor industry it took Van Duivenbode some efforts to convince his fellow engineers. “Nobody wanted to believe it. So we built a test setup with thousands of transistors. In the lab several broke down every week. Than, we moved the setup to the Municipal Cave in Valkenburg, underneath a thick layer of earth and limestone. After eight weeks, not a single transistor had failed. Since that experiment it is known in the industry that you have to take cosmic radiation into account, not only for big chips, but for small mosfets as well.”

Broad profession

Next to his work at ASML, Van Duivenbode is research fellow at the Eindhoven University of Technology, of course in power electronics. Since several years, he is also trainer at High Tech Institute, for the course ‘Actuation and power electronics’. “That training is interesting for everyone involved in high-precision systems. And that doesn’t necessarily mean nanometers as at ASML”, assures Van Duivenbode. “On micrometer scale it is just as important to see how you can fit the power electronics into your mechatronic system. And even when you talk about something ‘rough’ as the drive system of a car, you still have to make sure it is stable and reliable.”

“Power electronics is a profession that doesn’t stand alone”, he continues. “It is always in the service of the system. No one will ask just for a circuit that can generate a couple of kilowatt. That is not interesting. ”

'The key is the whole system, and that is precisely the focus of the training.'

“The nice thing about power electronics is that it contains all subdomains of electrical engineering. Apart from all standard building blocks for power electronics, like mosfets, diodes and coils, you need to know about analog electronics as well, for accurate measurements, and about digital technologies and VHDL. Electromagnetic compatibility is a theme because high voltages and high currents play into the hands of failures. So you have to understand EMC, just as thermal design since components can heat up quickly. You have to cope with that heat. A heat sink might be the solution but than you have to be aware of capacitive coupling.”

And than there is reliability. “At those high powers, the electronics is pushed to its limits. The PCBs have to work hard, so they are more susceptible to failure”, says Van Duivenbode. “That means you got to know about reliability and lifecycle testing.”

Super conductivity

Van Duivenbode is one of multiple teachers of the training. Apart from power electronics and calculating on magnetic circuits – the parts that Van Duivenbode has taken on him – the course is also about actuators. Linear and planar Lorentz actuators, piezo actuators, they all are covered. Relatively new and promising are the so-called reluctance motors.

“That is a variety in which you let a current flow through a coil and use that to attract a piece of magnet steel, or soft iron”, Van Duivenbode explains. “Reluctance motors can deliver high power densities. The disadvantage is that those forces are highly non-linear and that the motor can only generate pull forces. At the university, in the group of Elena Lomonova, a lot of research is done to find a solution for this non-linearity. When that is found, the high power density makes reluctance motors very attractive for many applications.”

'The industry is not there yet, so superconductivity is still considered exotic in the training.'

Another emerging technology is super conductivity. “That is already used in, for instance, MRI scanners. There also has been a successful Dutch test to use super conductivity in underground power lines. The principal was proofed, but the project didn’t get any follow-up”, Van Duivenbode explains. “The first windmill with superconducting magnets has been built as well. Those magnets were in the rotor, so the whole superconducting system had to rotate with the blades. Quite an achievement, if you ask me. The next step is to make it economically feasible; someone has to take that step and invest in it.” The industry is not there yet, so superconductivity is still considered exotic in the training.

This article is written by Alexander Pil, tech editor of High-Tech Systems.

Recommendation by former participants

By the end of the training participants are asked to fill out an evaluation form. To the question: 'Would you recommend this training to others?' they responded with a 8.7 out of 10.

TUE PDEng answers the call to drive the future of industry

The link between industry and academia is crucial for preparing the workforce of tomorrow. As industrial leaders look to TUs for advanced engineers to fill leadership roles like that of a system architect, TUE’s PDEng program answers the call by infusing personal and professional development into students with training.

The Professional Doctorate in Engineering degree (PDEng) isn’t your typical advanced degree. In fact, the program is relatively unique to the Netherlands, with only a few other countries offering similar programs. PDEng’s Dutch roots go back several decades, but in 2003 the professional doctorate got its new name and was recognized by the Bologna Declaration as a third-cycle (doctorate-level) program. Different to a PhD, the curriculum doesn’t require years of research and a lengthy dissertation, rather it’s a two-year post-master’s program aimed at elevating systems knowledge and enabling the next generation of developers by gaining valuable hands-on experience and first-hand access to industry to become a system architect.

Each year, Eindhoven University of Technology (TUE) accepts 100-120 PDEng trainees across its various programs, spanning the fields of chemical, mechanical, electrical, software and medical engineering. “We have a very stringent selection process to ensure that our programs maintain an incredibly high level,” describes Peter Heuberger, the recently retired program manager for the Mechatronics and Automotive PDEng groups at TUE. “Just to give you an idea, each of my groups has only eight people. Those 16 spots were filled out of a pool of more than 200 applications that we received from all over the world.”

Peter Heuberger: “We’re looking to build advanced engineers that will take a few steps back and adopt a helicopter view of the problem.”

'Not only are they located in the neighborhood, but their extensive pool of industry-experienced engineers and experts greatly complimented our goal of getting our trainees as close to industry as possible'

Helicopter

As technology becomes exponentially more complex, success in technical development relies heavily on teams of multidisciplined engineers working together, each doing their part to contribute. A challenge, however, is that by nature, engineers tend to focus on one area and fail to see the big picture of the whole system. “Typically, if you give an engineer a problem, they’ll jump right in and start to unscrew bolts and take things apart, focused on finding their own solution to the problem,” illustrates Heuberger. “But we’re looking to build advanced engineers that will take a few steps back and adopt a helicopter view of the problem. Not just where the problem lies, but for whom is it a problem? Will it still be a problem next year? What are the costs involved? What’s the lifetime of the product?”

So, how do TUE’s Mechatronics and Automotive PDEng programs encourage their engineers to adopt this big-picture systems approach? They turn to training – especially in the first year. “A few years ago, while we were organizing system engineering courses at the university, it became clear that we didn’t have the resources or manpower to do all the necessary training in house,” explains Heuberger. “That’s when we reached out to High Tech Institute for help in providing training courses. Not only are they located in the neighborhood, but their extensive pool of industry-experienced engineers and experts greatly complimented our goal of getting our trainees as close to industry as possible.”

“After the first week of introductions, we have the trainees jump right into the Systems Thinking course. This is where many of the trainees get their first introduction and exposure to industry, the demands of the industrial plight and specific methodologies with which to approach system engineering,” says Heuberger. After the initial training, trainees spend the next several periods honing the methods and skills they’ve learned as they train their own system-engineering approach. “For this, we take on several sample projects, given to us by industrial partners like ASML, DAF, Philips and Punch Powertrain, where trainees take on different roles, ranging from project manager and team leader to communications, configurations or test managers. These exercises add more practical tools to the training and give trainees a better grasp of the bigger picture as they gain new perspective in the essence of their work.”

'This is precisely one of the most important aspects of training, the gained awareness and perspective'

Awareness

As the Mechatronics and Automotive PDEng trainees shift into the final module of the first year, TUE again reaches out to High Tech Institute to give a training on Mechatronics System Design. “This is a really high point for our trainees nearing the end of their first year, especially those interested in mechatronics. At this stage, they learn about advanced control theory from Mechatronics Academy experts like Adrian Rankers,” depicts Heuberger. “Something that really seems to stick with them is that you don’t always need very sophisticated control theory. You need to get the job done. When looking at a problem from a smart perspective, sometimes the most basic control theory is the best fit. But of course, it might be due to the control application or to the hardware setup, for example. This is the point where it all seems to click, and they really see the big picture.”

“This is precisely one of the most important aspects of training, the gained awareness and perspective,” adds Riske Meijer, incoming director of the Mechatronics and Automotive PDEng programs. “The awareness that when you’re starting any job, you’ve got to look beyond one task and one solution, at the job as a whole. That’s what it takes to be a successful system architect in industry.”

Riske Meijer: “You’ve got to look beyond one task and one solution, at the job as a whole. That’s what it takes to be a successful system architect in industry.”

Answering the call

Heuberger and Meijer will be the first to tell you, the TUE PDEng program doesn’t produce system architects but more of a system engineer. After all, there’s a big difference between leading groups of 3-5 people at university compared to leading groups of 30-50 in today’s workplace. To get to the level of a real system architect, it takes somewhere around 20 years of experience and development in the industry. However, by giving young engineers enhanced tools and real, hands-on industrial experience, TUE provides them a head start. Of course, not all trainees go on to become system architects, as not everyone is built the same. Many of them go on to find their place in other leadership roles like project management, people management or technical leads.

“Industrial partners have called on us to help produce advanced engineers beyond the master’s-degree level. They’re looking for young talent that will be able to step up as team leaders and in other leadership roles to advance the industry,” suggests Heuberger. “So that’s what we aim to do, we’re answering the call of industry and preparing future engineers, team leaders, project managers and system architects to fill those needs.”

This article is written by Collin Arocho, tech editor of Bits&Chips.

Recommendation by former participants

By the end of the training participants are asked to fill out an evaluation form. To the question: 'Would you recommend this training to others?' they responded with a 8.9 out of 10.

“Testing is tattooed on my forehead”

When he was a student, he didn’t have the slightest interest in chips, let alone in testing them. Now, Erik Jan Marinissen is an authority in the IC test and design-for-test arena and even teaches on the subject.

Last year, when Erik Jan Marinissen heard that his papers on Design for Test at the IEEE International Test Conference (ITC) had made him the most-cited ITC author over the last 25 years, he didn’t believe it. “I had skipped a plenary lunch session to set up a presentation that I would give later that day when passers-by started congratulating me. For what, I asked them. They explained that it had just been announced that I’m the most-cited ITC author over the past 25 years. Well, I thought, that can’t be right. Of course, I had presented a couple of successful papers over the years, but surely the demigods of the test discipline – the people I look up to – would be miles ahead of me,” tells Marinissen.

Back at home, Marinissen got to work. He wrote a piece of software that sifted through the conference data to produce a ‘hit parade’ of authors and papers. The outcome was clear: not only was he the most-cited author, but his lead over his idols was also actually quite substantial. ITC being the most prominent scientific forum in his field, there was no question about it: Marinissen is an authority in the test and design-for-test (DfT) disciplines (see inset “What’s design-for-test?”).

Credit: Imec

Once he was certain there had been no mistake, Marinissen felt “extremely proud. I’ve won some best-paper awards over the years, but they typically reflect the fashion of the moment. What’s popular one year, may not be anymore the next. My analysis confirms this, actually: not all awarded papers end up with a high citation score. Being the most-cited author shows that my work has survived the test of time; it’s like a lifetime achievement award.”

What’s design-for-test?
A modern chip consists of millions or even billions of components, and even a single one malfunctioning can ruin the entire chip. This is why every component needs to be tested before the chip can be sold. It’s turned on and off, and it needs to be verified that it changed state.

The hard part is: you can’t exactly multimeter every transistor as you’d do with, say, a PCB. In fact, the only way to ‘reach’ them is through the I/O, and a chip has far fewer I/O pins than internal components. Indeed, the main challenge of testing is to find a path to every component, using that limited number of pins.
This task is impossible without adding features to the chip that facilitate testing. Typically, 5-10 percent of a chip’s silicon area is there just to make testing possible: adding shift-register access to all functional flip-flops, decompression of test stimuli and compression of test responses, on-chip generation of test stimuli and corresponding expected test responses for embedded memories. Design-for-test (DfT), in its narrow definition, refers to the on-chip design features that are integrated into the IC design to facilitate test access.
Colloquially, however, the term DfT is also used to indicate all test development activities. This includes generating the test stimulus vectors that are applied in consecutive clock cycles on the chip’s input pins and the expected test response vectors against which the test equipment compares the actual test responses coming out of the chip’s output pins. Chip manufacturers run these programs on automatic test equipment in or near their fabs.

'I soon realized how wrong I was about testing. It’s actually a diverse and interesting field! '

Diverse and interesting

Verifying the calculations that entitled him to a prestigious award might be considered an instinct for someone who has dedicated his life to checking whether things work correctly, but Marinissen and testing weren’t exactly love at first sight. “As a computer science student at Eindhoven University of Technology, I didn’t have much affinity with chips or electrical engineering. We CS students used to look down on electrical engineers, actually. Electrical engineers are only useful for fixing bike lights, we used to joke. I’m sure they felt similarly about us, though,” Marinissen laughs.

Testing seemed even less appealing to Marinissen, for reasons he thinks are still true today. “If you don’t know much about the field, it may seem like testers are the ones cleaning up other people’s messes. That’s just not very sexy. For IC design or process technology development, it’s much easier to grasp the creative and innovative aspects involved. Even today, I very rarely encounter students who have the ambition to make a career in testing from the moment they set foot in the university.”

It took a particular turn of events for Marinissen to end up in testing. “I wanted to do my graduation work with professor Martin Rem because I liked him in general and because he worked part-time at the Philips Natuurkundig Laboratorium, which allowed him to arrange graduation projects there. Like most scientists in those days, I wanted to work at Philips’s famous research lab. But, to my disappointment, professor Rem only had a project in testing available. I reluctantly accepted, but only because I wanted to work with the professor at the Natlab.”

“I soon realized how wrong I was about testing. It’s actually a diverse and interesting field! You need to know about design aspects to be able to implement DfT hardware, about manufacturing to know what kind of defects you’ll be encountering and about algorithms to generate effective test patterns. It’s funny, really. Initially, I couldn’t be any less enthusiastic about testing, but by now, it has been tattooed on my forehead.”

Stacking dies

After finishing his internship at the Natlab in 1990, Marinissen briefly considered working at Shell Research but decided that it made more sense to work for a company whose core business is electronics. He applied at the Natlab, got hired but took a two-year post-academic design course first. Having completed this, Marinissen’s career started in earnest in 1992.

“At Philips, my most prominent work was in testing systems-on-chip containing embedded cores. A SoC combines multiple cores, such as Arm and DSP microprocessor cores, and this increases testing complexity. I helped develop the DfT for that, which is now incorporated in the IEEE 1500 standard for embedded core test. When the standard was approved in 2005, many people said it was too late. They thought that companies would already be set in their ways. That wasn’t the case. Slowly but surely, IEEE 1500 has become the industry default.”

Marinissen is confident the same will eventually happen with another standard he’s helped set up. He worked on this after transferring from Philips, whose semiconductor division by then had been divested as NXP, to Imec in Leuven in 2008. He actually took the initiative for the IEEE 1838 standard for test access architecture for three-dimensional stacked integrated circuits himself. He chaired the working group that developed the standard for years until he reached his maximum term and someone else took the helm. The standard was approved last year.

“Stacking dies was a hot topic when I was hired at Imec. Conceptually, 3D chips aren’t dissimilar from SoCs: multiple components are combined and need to work together. By 2010, I’d figured out what the standard should look like, I’d published a paper about it and I thought: let’s quickly put that standard together. These things always take much longer than you want,” Marinissen sighs.

His hard work paid off, though. Even before the standard got its final approval, the scientific director at Imec received the IEEE Standards Association Emerging Technology Award 2017 “for his passion and initiative supporting the creation of a 3D test standard.”

Credit: Imec

Flipping through the slides

As many researchers do, Marinissen also enjoys teaching. He accepted a position as a visiting researcher at TUE to mentor students who – unlike himself when he was their age – take an interest in DfT. At an early stage, he also got involved with the test and DfT course at Philips’ internal training center, the Centre for Technical Training (CTT). “Initially, most of the course was taught by Ben Bennetts, an external teacher, but I took over when he retired in 2006. I remember having taught one course while still at NXP, but not a single one for years after that – even though Imec allowed me to. There just wasn’t a demand for it.”

“Then, in 2015, all of a sudden, I was asked to teach it twice in one year. Since then, there has been a course about once a year.” By then, the training “Test and design-for-test for digital integrated circuits” had become part of the offerings of the independent High Tech Institute, although, unsurprisingly, many of the course participants work at companies that originate from Philips Semiconductors. “Many participants have a background in analog design or test and increasingly have to deal with digital components. I suppose that’s understandable, given the extensive mixed-signal expertise in the Brainport region.”

“I might be the teacher, but it’s great to be in a room with so much cumulative semiconductor experience. Interesting and intelligent questions pop up all the time – often ones I need to sleep on a bit before I have a good answer. It’s quite challenging, but I enjoy it a lot. As, I imagine, do the students. I’m sure they prefer challenging interactions over me flipping through my Powerpoint slides.”

From begrudgingly accepting a graduation assignment to sharing his authoritative DfT expertise in class – the young Erik Jan Marinissen would never have believed it.

Recommendation by former participants

By the end of the training participants are asked to fill out an evaluation form. To the question: 'Would you recommend this training to others?' they responded with a 8.6 out of 10.

Training is key to superior chip knowledge at NXP

As the electronics and semiconductor domain continues to explode with complexity, engineers are having to step outside of their comfort zones and take on new roles to keep up with the increasing demands of chip performance. For semiconductor giant NXP’s failure analysis department, training employees and broadening its knowledge base is instrumental in holding the leading.

For nearly 25 years, Johan Knol has known exactly where he wanted to be. In 1996, fresh off finishing his master’s degree in electronics with a focus on analog design and semiconductor processing at the University of Twente, he had his eyes set on joining the semiconductor arm of Philips – which was later spun out as NXP. “I saw what Philips was achieving in the semiconductor industry at that time and it was quite impressive. But even then, it was extremely evident to me that the industry needed a major catchup, particularly in the analog-chip world,” recalls Knol, Manager of Failure Analysis for Security and Connectivity at NXP. “I came to Nijmegen to tour their cutting-edge MOS-4 fab, and it really piqued my interest. I knew this was a place where real innovation could be realized, and I wanted to be part of it.”

In his 25 years with the company, Knol has held several positions. First as a device physics engineer, then a process integration engineer – working to improve the overall process from development to manufacturing – before opting for a move to NXP’s failure analysis (FA) department. “I chose failure analysis because it combines all corners of NXP. Essentially, we work in a state-of-the-art silicon debug lab, where my group is responsible for identifying electrical failures within all the new products NXP launches and ensuring all of our products meet the highest quality standards,” describes Knol. “We help the design teams identify issues in the design and manufacturing chains. To do that, NXP provides us with top-of-the-line equipment to handle all the analysis requests, from mixed-signal processing technologies down to 16nm, and using techniques like laser voltage probing, laser frequency mapping and nanoprobing – we do it all.”

Evolving

One aspect of the silicon domain that Knol has encountered in his 2.5 decades in service is just how quickly the industry seems to be evolving. According to him, engineers, at least in his department, are having to go well beyond their areas of focus and broaden their understanding of NXP’s entire production chain, especially as chip complexity continues to explode. One essential tool he relies on to keep his team sharp: training and personal development.

“Almost no one comes out of university, or even from another department, having a solid grasp of the entire field at NXP. When someone joins our team, they’ve got to learn at least 4-5 different areas of the production chain,” depicts Knol. “It’s only with that knowledge that you can solve the kinds of problems that we get sent to us – ie a chip isn’t working, but with no clue as to why. Typically, new hires have a background in physics or chemistry or electronics, and maybe they’ll even have experience in analog or digital design but hiring someone with expert knowledge on mixed-signal design and these other disciplines doesn’t really happen.”

For Knol, however, it’s precisely this understanding of multiple aspects and disciplines that’s so crucial to the success of NXP’s FA lab, and why he’s a big believer in tech training. Knol: “Our competence program is primarily focused on broadening the knowledge of our engineers. They need to have a broad view of everything involved in creating a chip.”

'At NXP, we’ve had a shift from truly analog design to embedding digital more and more – so mixed-signal designs – and it’s happening ridiculously fast'

Digital transition

One driving force that Knol and NXP have experienced in the semiconductor sphere is the transition from analog to digital chips, or at the very least a combination of the two. “At NXP, we’ve had a shift from truly analog design to embedding digital more and more – so mixed-signal designs – and it’s happening ridiculously fast,” says Knol. “But even products that were 100 percent analog in the past, for good reasons, are now embedding more digital cores.”

Knol uses the example of NXP’s smart antenna solutions product line for 5G applications, where they used to deliver single RF transistors or RF low-noise amplifiers but now have started embedding digital content in that line of chips. “These chips are now much more complex, and the engineers that have spent years perfecting the analog design are now suddenly facing products with digital content. At first, they didn’t know how to deal with that, how to interpret that, or even how to test.”

That’s when NXP’s FA department reached out to High Tech Institute and arranged for an in-company session of the tech training “Test and design-for-test for digital integrated circuits” . “This shift to digital isn’t going to go away, it’s only going to become more prevalent. As a unit, we decided we needed to establish new competencies in this domain and this training was a perfect opportunity,” highlights Knol. “We chose High Tech Institute because of its undeniable link to the high-tech industry. They have a strong understanding of the domain because the trainers are actually from the industry. More importantly, we were able to work directly with them to tune the content of the tech training to our specific needs. That was the real strength that we saw in High Tech Institute.”

 

Time management

Of course, the success of any technology company depends on highly skilled and highly technical people. Sometimes, however, success can also stem from the soft skills of employees – such as good communication, stakeholder management and using time in the most efficient ways. But as the complexity continues to increase, and engineers are taking on more responsibility, sometimes the soft skills can be a challenge. “We have some really outstanding minds at NXP. Our engineers are some of the best in the world. But one thing we’ve found is that the most specialized technical people can often be lacking when it comes to soft skills,” Knol describes. “Efficiency being key in an environment like this means every day you’re being challenged to do more in your daily efforts.”

This can be a little tricky when trying to balance work, meetings, planning and the many personalities you encounter in the workplace. That’s why NXP adopted another tech training from High Tech Institute: “Time management in innovation.” “We saw that people were struggling with time management. To be honest, I was one of them myself. So, we took this training and made it a default course for our people – meaning at some point in time, everyone should take it. And it’s from personal experience that I can say this tech training is extremely helpful,” states Knol. “People came back from this course having learned new tools to embed better planning in their work, learning how best to establish boundaries and how to address the issues they face in communicating with others. So yeah, that has become another default module that we offer to our people. Time management, education, self-reflection, taking leadership and working in project teams on a global scale. These are the kinds of courses that have become quite important to us. We believe that by investing in these trainings to help our workers enhance their personal development, it makes us a stronger department within NXP.”

This article is written by Collin Arocho, tech editor of Bits&Chips.

Klaus Werner cooks up a new solid-state RF training

RF energy systems have undergone a huge transformation since the early days of the tube-based magnetrons. But according to High Tech Institute trainer Klaus Werner, while the crude power of the tube is tough to match, the new generation of solid-state RF integrated circuits offers unprecedented control, efficiency and reproducibility.

Klaus Werner didn’t get a usual start in the field of RF energy solutions. After studying physics at the University of Aachen, he came to Delft University of Technology to further develop CVD systems for semiconductor technology. “At the time, I was just meant to be there for six months,” remembers Werner. But eight years and a PhD in silicon germanium growth in CVD-type systems later, Werner found himself still in Delft. “It was definitely time for a new challenge,” he recalls. Then, in 1995, Werner joined the MOS-3 fab in Nijmegen for 10 years before going to Eindhoven to the Philips team responsible for laser displacement sensors – those that are still used in computer mice today.

The fit wasn’t quite right for Werner, and the 3+ hours of commuting every day for work simply wasn’t working. So back to Nijmegen he went, becoming part of the RF power group at NXP. “The group was mostly concerned with the development of semiconductor technology and devices for high-power, high-frequency applications of RF. Most notably, in the areas of base stations for the cellular network, telephone, radar systems, and to a large extent, radio-TV transmission,” Werner describes. But it was while he was there at NXP that he saw people were applying the electromagnetic waves not for communications and data but using their sheer energy to power plasmas for lasers, lights and even medical applications, for example in hypothermia.

White goods

Suddenly, activity in the solid-state RF energy realm really started to heat up, specifically driven by white-goods companies, which got their name from the standard of white-coated exteriors of home appliances. “Whirlpool and several others saw a business opportunity to improve microwave ovens in the way they heat food,” explains Werner. “That’s when we started the RF Energy Alliance, an industry consortium that set out to establish standards, create roadmaps and develop new generations of the technology to build consensus and bring down cost.” But a few years in, and the white-goods companies pulled out, as it was simply taking too long for them to bring down costs to have a competitive offer against the magnetron-powered ovens.

“NXP, as a semiconductor company, wanted to focus on components and the technology behind the components. At the same time, I was focused on pushing forward with openly spreading the knowledge and interest of the technology and its applications, and in the end, we decided to split,” says Werner. “That’s when I decided to jump into the gap that I saw in the RF-energy field, and created Pink RF – taking on the name ‘pink’ as a nod to the breast cancer support organization Pink Ribbon – with an overall desire to develop the technology for wide use in areas that could really help people’s lives, for example in medicine.”

'One of the major hurdles in getting this technology known and used by broader audiences is sharing the knowledge about it'

Sharing knowledge

Despite the RF Energy Alliance folding, Werner was a firm believer in the promise of the technology and knew there was real value in the efforts of the failed consortium. “One of the major hurdles in getting this technology known and used by broader audiences is sharing the knowledge about it,” asserts Werner. “I was writing articles, preparing workshops and trainings, anything to increase the knowledge. I found that many people just didn’t have a solid idea of how to approach this unusual heat source.” Refusing to give up, Werner came across the International Microwave Power Institute (IMPI), which was doing a lot of the same outreach and promotional work on microwave power that he was looking for in the old RF Energy Alliance. Today, he serves as the chairman of IMPI’s RF energy section and is responsible for diffusing information around the unique technology and creating training opportunities to share his knowledge.

“That’s one of the reasons I wanted to join High Tech Institute. It’s a real institution that goes beyond simply giving workshops. It allows us to better reach technical people and connect with a specific audience and cater to its specific needs,” Werner says enthusiastically. “One of the best parts is that many participants already have a good understanding of what the technology entails. Everything they’ve already learned in school, about the behavior of waves and diffraction and refraction, still absolutely holds true. That idea alone has major implications, from a foundational aspect. It helps loosen the minds and starts to build perspective around this technology.”

New training

Werner’s first edition of the new “Solid-state generated RF and applications” training is aimed to do just that. The three-day course will give participants an inside view into the developments of the technology, from the previous generation of high-frequency tube-based magnetrons to the modern-day solid-state electronics-based energy source. “In terms of crude power, the magnetrons are tough to beat. The problem, however, stems from the lack of optimization and control of the tube and the degradation of the signal over time,” illustrates Werner. “The new generation of solid-state RF is really being driven by cellular communications, where there’s a need for high power linearity that’s created by transistors and semiconductors. This method creates a stable, efficient and, more importantly, controllable and reproducible signal that could never be realized by the magnetron.”

“There are many factors that come into play when determining how best to utilize RF energy and we’ll cover a lot of them in the new training. We’ll use a mixture of theory and practice to dig deeper into the technology. From safety aspects like radiation exposure – which is not a thing – to frequencies, behavior and interaction with matter,” describes Werner. “The reality is that this technology is extremely useful and completely scalable. From heating minute amounts of liquids under very well-controlled circumstances for Covid testing, up to cooking 1,000 liters of soup every hour. This modular technology is applicable from microjoules up to megajoules, with nearly unending possibilities.”

This article is written by Collin Arocho, tech editor of Bits&Chips.